Good morning!

Please grab a lab sheet from the front desk.

Take out your homeowork.

Please check your answers with the key above the chem hood.

Today

- Developing Reference Equations.
- Review of 10.1 & 10.2.and 10.3
- Mole lab.

Mole Lab:

There are four stations that you will rotate through.

At each station you will be able to measure a chemical, and then describe it in a different way using mole conversions (dimensional analysis).

You will also explore % composition and empirical formulas.

Station 1: Aluminum Can

Station 2: Pennies

Station 3: Snack Food: Eat the snack food (1 bag per group please) if you would like.

Station 4: Sand. Mass a weigh boat. Add three large scoops of sand using a scoopula. Use this to determine the mass of sand.

Tip: use the answer from #5 to help you with numbers 6 and 7.

Finished?

Put the lab sheet in your folder.
Put your folder in the box at the front of the room.

Grab a white board.

Write down the type of problem that you would like to see reviewed from chapter 10.

Reference Formulas

- Anything that is true about I mole of a particular substance.
- This may include the molar mass, number of particles, and volume (in the case of gases at STP.
- We will assume STP (standard temperature and pressure) is true for now.

Set Up

- I mole is always 6.02 x 10²3.
- I mole of a substance is always the atomic mass, but in grams. Called Molar Mass
- I mole of a gas is always 22.4L at STP (0 degrees Celsius and I atm)

I mole of Salt: NaCl

23+35,45

- I mole = 6.02×10^2 3 formula units.
- I mole = 58.45g
- Put your into into one large equation.
- I mole = 6.02 x 10^23 formula units = 58.45g.

I mole of Platinum

• I mole = atoms.

• I mole = g.

• I mole = atoms = g.

Applying the Reference Formula

- Identify the known and write it in first.
- Make I fraction that relates the known quantity to the unknown quantity that the problem asks for.
- Unknown on top, known on the bottom.
- Use dimensional analysis to solve for the unknown.

How many molecules of SO₂ in a 30g sample?

- Reference Formula: I mole = 6.02×10^{-3} molecules = 6.4 g.
- Known: 30₅
- Unknown: molecules 27
- DA: 308 6.02 + 10 molecules 2 8 11 molecules 2 8 11 molecules

How many grams in a 25L sample of CO?

- Reference Formula: I mole = 6.02×10^{27} molecules = 2.8 g = 22.4 L
- Known: 25 L
- Unknown: molecules
 - DA: 25x 28g 31,25

What is the mass of 2.3 x 10^21 formula units of CaCl2?

- Reference Formula: I mole = formula units = g.
- Known:
- Unknown: molecules
- DA:

How many moles are in a sample of 94g of Al?

- Reference Formula: I mole = atoms = g.
- Known:
- Unknown: molecules
- DA:

What is the mass of 15L of CH4?

- Reference Formula: I mole = molecules = g = 22.4L
- Known:
- Unknown: molecules g つっぱょ
- DA:

NutraSweet is 57.14% C, 6.16% H, 9.52% N, and 27.18% O. Calculate the empirical formula of NutraSweet and find the molecular formula. (The molar mass of NutraSweet is 294.30 g/mol)

C: 57.18/12 = 4.75/0.68H: 6.16/1=6.16/0.68N: 9.53/14 = 0.68/0.68O: 27.18/16 = 1.7/0.68

Given
$$\downarrow$$
 P.T. \downarrow
 $57.14 \text{ g.C} \times \frac{1 \text{ mol C}}{12.0 \text{ g.C}} = \frac{4.76}{0.68} \text{ mol C} \Rightarrow 7(2) = 14$
 $6.16 \text{ g.H.} \times \frac{1 \text{ mol H}}{1.01 \text{ g.H.}} = \frac{6.10}{0.68} \text{ mol H} \Rightarrow 8.97 \approx 9(2) = 18$
 $9.52 \text{ g.N.} \times \frac{1 \text{ mol N}}{14.0 \text{ g.N.}} = \frac{0.68}{0.68} \text{ mol N} \Rightarrow 1(2) = 2$
 $27.18 \text{ g.O.} \times \frac{1 \text{ mol O}}{16.0 \text{ g.O.}} = \frac{1.70}{0.68} \text{ mol O} \Rightarrow 2.5(2) = 5$

↑ too far to round, multiply to get a whole number

Empirical formula =
$$C_{14}H_{18}N_2O_5$$

Mole Lab

- You will Identify the mass of a given substance.
- Mass each material as labeled on the canisters.
- The T (tare) is the mass of the canister.
- Easier to find the mass of the sample.

Mole Lab:

Make a reference equation for each chemical that you are measuring. Use this to convert from grams of a sample to:

Number of particles of a chemical. Number of moles of a chemical.

Wednesday, October 29, 14		